Determination of CT-to-density conversion relationship for image-based treatment planning systems.
نویسندگان
چکیده
The implementation of tissue inhomogeneity correction in image-based treatment planning will improve the accuracy of radiation dose calculations for patients undergoing external-beam radiotherapy. Before the tissue inhomogeneity correction can be applied, the relationship between the computed tomography (CT) value and density must be established. This tissue characterization relationship allows the conversion of CT value in each voxel of the CT images into density for use in the dose calculations. This paper describes the proper procedure of establishing the CT value to density conversion relationship. A tissue characterization phantom with 17 inserts made of different materials was scanned using a GE Lightspeed Plus CT scanner (120 kVp). These images were then downloaded into the Eclipse and Pinnacle treatment planning systems. At the treatment planning workstation, the axial images were retrieved to determine the CT value of the inserts. A region of interest was drawn on the central portion of the insert and the mean CT value and its standard deviation were determined. The mean CT value was plotted against the density of the tissue inserts and fitted with bilinear equations. A new set of CT values vs. densities was generated from the bilinear equations and then entered into the treatment planning systems. The need to obtain CT values through the treatment planning system is very clear. The 2 treatment planning systems use different CT value ranges, one from -1024 to 3071 and the other from 0 to 4096. If the range is correct, it would result in inappropriate use of the conversion curve. In addition to the difference in the range of CT values, one treatment planning system uses physical density, while the other uses relative electron density.
منابع مشابه
Evaluation of the gray level in CBCT systems and its relationship with HU in CT Scanners
Introduction: Cone-beam CT (CBCT) is an imaging system which offers three-dimensional (3D), multiplanar images and has many advantages over computed tomography (CT) including shorter acquisition times for the resolution desired in dentistry, lower radiation dose to the patient, reasonable price and higher spatial resolution but CBCT scanners are unable to display actual Hounsf...
متن کاملInvestigating the effects of different kernels used for CT image reconstruction on dose distributions in treatment planning of kidney cancer radiotherapy
Introduction: The quality of CT images used for treatment planning of cancer patients is an important issue in accurate outlining of the tumor volume and organs at risk. Different kernels in CT scanner systems are available for improving the image quality. Applying these kernels on CT images will change the CT numbers and electron density of tissues, conse...
متن کاملDesign, Construction and Evaluation of an Anthropomorphic Head Phantom for Assessment of Image Distortion in Stereotactic Radiosurgery Planning Systems
Introduction: In recent years, the use of magnetic resonance (MR) images in radiation treatment planning has drawn considerable attention. However, although the extent of a tumor can be determined in great detail on MR images, the geometric accuracy of these images is limited by distortions stemming from the inhomogeneity of the static background magnetic field, the nonlineari...
متن کاملGemstone spectral imaging: determination of CT to ED conversion curves for radiotherapy treatment planning
The monochromatic images acquired by Gemstone spectral imaging (GSI) mode on the GE CT750 HD theoretically determines the computed tomography (CT) number more accurately than that of conventional scanner. Using the former, the CT number is calculated from (synthesized) monoenergetic X-ray data. We reasoned that the monochromatic image might be applied to radiotherapy treatment planning (RTP) to...
متن کاملPseudo-CT Generation from Magnetic Resonance Imaging by fuzzy look up table algorithm
Introduction: Despite growing interest in the use of magnetic resonance imaging (MRI) in the external radiotherapy design process (RT), Computer Tomography (CT) remains a gold standard and is regarded as a basic imaging modality in radiotherapy. MRI shows the high contrast in soft tissues without any radiation exposure to patients. As a result, MRI is used in functional tissue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical dosimetry : official journal of the American Association of Medical Dosimetrists
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2005